最新消息: PyCharm vs VSCode,哪个更好?
您现在的位置是:群英 > 开发技术 > PHP语言 >
使用opencv的aruco库进行位姿估计
ITPUB发表于 2021-01-13 16:21 次浏览
本文章向大家介绍使用opencv的位姿估计,主要包括使用opencv的aruco库进行位姿估计使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

01.什么是单应性

单应性是一种平面关系,可将点从一个平面转换为另一个平面。它是一个3乘3的矩阵,转换3维矢量表示平面上的2D点。这些向量称为同质坐标,下面将进行讨论。下图说明了这种关系。这四个点在红色平面和图像平面之间相对应。单应性存储相机的位置和方向,这可以通过分解单应性矩阵来检索。

针孔相机

针孔相机数学模型

 

针孔相机模型是相机的数学表示。它接受3D点并将其投影到像上图所示的图像平面上。该模型的重要方面是焦点,像平面(上图中的灰度平面),主点(上图中的像面上的粗体点),焦距(像平面与像之间的距离)焦点)和光轴(垂直于穿过焦点的像平面的线)。可以在投影矩阵中编码该变换,该投影矩阵将表示3D点的4维均匀向量转换为表示图像平面上2d点的3维均匀向量。

 

齐次坐标是表示计算机视觉中的点的投影坐标。由于拍摄照片时会从3D转换为2D,因此深度范围会丢失。因此,可以将无限数量的3D点投影到相同的2D点,这使得同质坐标在描述可能性射线时非常通用,因为它们的比例相似。齐次坐标仅取直角坐标,并将维数增大到末端。

用齐次坐标表示的笛卡尔坐标,在比例上也相等。

请注意,三角形可能会越来越远且更大,但仍然可以产生相同的图像给定同质坐标,将所有元素除以矢量的最后一个元素(比例因子),然后笛卡尔坐标是一个矢量,该矢量由除最后一个元素之外的所有元素组成。

02.投影矩阵

投影矩阵是与相机属性相关的其他两个矩阵的乘积。它们是外部和内部相机矩阵。这些矩阵分别存储摄像机的外部参数和固有参数(因此命名)。

投影矩阵(3 x 4矩阵)

外参矩阵

外在矩阵存储摄像机在全局空间中的位置。该信息存储在旋转矩阵以及平移矢量中。旋转矩阵存储相机的3D方向,而平移矢量将其位置存储在3D空间中。

旋转矩阵

然后将旋转矩阵和平移向量连接起来以创建外部矩阵。从功能上讲,外部矩阵将3D同类坐标从全局坐标系转换为相机坐标系。因此,所有变换后的矢量将相对于焦点在空间中表示相同的位置。

内参矩阵

本征矩阵存储相机的本征,例如焦距和主点。焦距(f 1和f 6)是从焦点到像面的距离,可以用像素宽度或像素高度(因此为何有2个焦距)来度量。每个像素都不是一个完美的正方形,因此每个边都有不同的边长。主点(cₓ和cᵧ)是光轴和像平面(像平面的功能中心)的交点。该矩阵将相对于焦点的3D坐标转换到图像平面上;将其视为拍摄照片的矩阵。当与外部矩阵组合时,将创建针孔相机模型。

针孔相机数学模型

现在,单应性是针孔相机模型的特殊情况,其中投影到相机上的所有现实世界坐标都位于z坐标为0的平面上。


 

 

 

H是单应性矩阵,是3 x 3矩阵,可将点从一个平面转换为另一个平面。在这里,变换是在Z = 0的平面和指向该点的图像平面之间进行的投影。单应性矩阵通常通过4点算法求解。本质上,它使用来自2个平面的4个点对应来求解单应矩阵。在OpenCV中,我们可以使用cv2.findHomography方法找到单应矩阵:

cv2.findHomography(<points from plane 1>, <points from plane 2>)

此方法需要某种形式的特征点跟踪,以便上面方法的结果。坐标测量的质量将有助于上述方法的准确性。一旦有了单应性矩阵,就可以将其分解为摄像机的平移和旋转。单应矩阵的分解如下所示:

 

我们可以通过将解决方案矩阵的前两列用作旋转矩阵中的前两列,然后使用叉积来找到旋转矩阵的最后一列,从而得出旋转矩阵。翻译是解决方案矩阵的最后一列。

 

03.分解代码

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
'''H is the homography matrixK is the camera calibration matrixT is translationR is rotation'''H = H.Th1 = H[0]h2 = H[1]h3 = H[2]K_inv = np.linalg.inv(K)L = 1 / np.linalg.norm(np.dot(K_inv, h1))r1 = L * np.dot(K_inv, h1)r2 = L * np.dot(K_inv, h2)r3 = np.cross(r1, r2)T = L * (K_inv @ h3.reshape(3, 1))R = np.array([[r1], [r2], [r3]])R = np.reshape(R, (3, 3))

代码链接:https://github.com/RaubCamaioni/OpenCV_Position

04,优势

使用Homography比其他算法简单得多,因为它非常简单直观。利用基本或基本矩阵的其他方法需要复杂的算法和更多的实现精力。由于所有视觉本地化方法都在做相同的事情,因此最好在可能的情况下使用Homography,以节省时间和精力。


免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
相关信息推荐